Soft idealization of a decomposition theorem
نویسندگان
چکیده
منابع مشابه
primary decomposition in a soft ring and a soft module
the main objective of this study is to swing krull intersection theorem in primary decomposition of rings and modules to the primary decomposition of soft rings and soft modules. to fulfill this aim several notions like soft prime ideals, soft maximal ideals, soft primary ideals, and soft radical ideals are introduced for a soft ring over a given unitary commutative ring. consequently, the p...
متن کاملDecomposition of fuzzy ideal continuity via fuzzy idealization
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openn...
متن کاملA Cohomology Decomposition Theorem
In [9] Jackowski and McClure gave a homotopy decomposition theorem for the classifying space of a compact Lie group G; their theorem states that for any prime p the space BG can be constructed at p as the homotopy direct limit of a specific diagram involving the classifying spaces of centralizers of elementary abelian p-subgroups of G. In this paper we will prove a parallel algebraic decomposit...
متن کاملA Decomposition Theorem for Domains
A domain constructor that generalizes the product is de ned. It is shown that with this constructor exactly the prime-algebraic coherent Scott-domains and the empty set can be generated from two-chains and boolean at domains. 3 List of Symbols I am identifying the symbols by the corresponding Latex(+Amssymb)-symbols. " uparrow # downarrow ! rightarrow ? bot > top leq geq 2 in W bigvee V bigwedg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2016
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1603741y